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An expedient route to diaza-spirocycles utilizing a sequential
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Abstract—A general method for the preparation of diaza-spirocycles is reported. This method used an olefin metathesis in order to
construct the desired spirocyclic framework. Beginning with commercially available protected amino ketones, this strategy ulti-
mately produced pharmacologically relevant diaza-scaffolds in an efficient and high-yielding process.
� 2006 Elsevier Ltd. All rights reserved.
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The continuing demand for novel lead compounds has
led to the development of our scaffold-oriented synthesis
program that targets pharmaceutically-attractive mole-
cular skeletons primed for subsequent manipulation and
derivatization. In this context, our group became inter-
ested in the synthesis of diaza-spirocycles due to their
presence in a variety of biologically active compounds.
Compounds containing these frameworks have proven
to possess anesthetic,1 antiinflammatory,2 and antioxi-
dant3 properties. In addition, they have served as NK1

receptor antagonists,4 glycoprotein antagonists5 and
CNS agents.6 Furthermore, the clinically useful dop-
amine antagonists such as spiperone and fluspiperone
are spiroannulated piperidine derivatives.7 This notable
pharmacological profile has initiated a number of
synthetic approaches toward diamino-spirocycles (and
related compounds)8 and warrants the continued com-
munication of novel methods toward their synthesis.
Along these lines, we now report on a ring-closing
metathesis-based strategy for the preparation of these
pharmacologically interesting diamino scaffolds.

Multicomponent reactions (MCRs) continue to attract
considerable interest from the scientific community due
to their ability to construct diversely functionalized
molecules via simple, one-step transformations.9 One
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such example is the a-aminoallylation of carbonyl
compounds, a three-component reaction of aldehydes/
ketones, amines, and an allylating agent.10

Herein, we report on efforts on the a-aminoallylation
reaction of aminoketones as the carbonyl component
followed by a ring-closing metathesis as a route to spiro-
cyclic diamines. The general strategy is outlined in
Figure 1. The reaction of an aminoketone with allyl-
amine generates a ketimine, which is followed by the
addition of the allyl group from pinacol allylboronate
to provide the homoallylic/allylic secondary amine.

The synthesis of spirocyclic frameworks from cyclic
ketones by the addition of allylmagnesium bromide to
preformed ketimines generated from allylamine, fol-
lowed by a ring-closing metathesis reaction (RCM) has
previously been reported by Wright and co-workers.11
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Figure 1. General strategy to spirocyclic diamines.
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Our method uses a concise one-pot procedure for the
addition of the allyl group to the in situ generated
ketimine using pinacol allylboronate. Pinacol allylboro-
nates represent an attractive allylating agent considering
their commercial availability, stability, functional group
tolerance and the non-toxic nature of boronic acids/
esters.

Briefly, 1-N-boc-3-piperidone 1, allylamine and the
boronic ester 2 were heated in toluene at 80 �C with
4 Å mol sieves for 8 h to provide the amine substrate 3
in 75% yield (Scheme 1). Following purification, inter-
mediate 3 was subjected to RCM conditions. It was
observed that 3 had to be pretreated with 1.0 equiv of
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Scheme 1. Reagents and conditions: (a) CH2@CHCH2NH2, toluene,
4 Å mol sieves, 80 �C, 75%; (b) p-TsOH, CH2Cl2; (c) 5 mol %
(ImesH2)(PCy3)(Cl)2Ru@CHPh, 90%.

Table 1. a-Aminoallylation and RCM products

Entry Ketone Amine a-Aminoallylation p
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a 1.0 equiv of p-TsOH was used prior to the RCM, for all other examples in
p-TsOH prior to the RCM reaction with the second gen-
eration Grubbs catalyst.12 In the absence of the pretreat-
ment the reaction failed to undergo ring-closure. Thus
reaction of 3 with 1.0 equiv of p-TsOH in CH2Cl2 for
30 min at reflux followed by the addition of the Grubbs
catalyst (5 mol %) gave 4 in 90% yield.13 Under these
conditions, it was observed that the RCM reaction
was complete within 2 h. Alternatively, the amines could
be adequately protected for the RCM reaction as the tri-
fluroacetamide via treatment of the free amine with tri-
fluoroacetic anhydride (TFAA) in pyridine, vida infra.14

The generality of the a-aminoallylation reaction was
demonstrated by the synthesis of a number of secondary
amines (Table 1). The reaction was found to be quite
general for both the amine and ketone substrates, as
yields ranged from moderate (47%) to excellent (96%).
It is noteworthy to mention that by simply varying the
length (allylic vs homoallylic) of the amine component
used in the MCR, both six- and seven-membered rings
could be accessed in the subsequent RCM.

Attempts were made to access five-membered rings via
the RCM of 5. Unfortunately, however, both the Petasis
boronic acid Mannich reaction15 with pinacol vinyl-
boronate and the addition of vinylmagnesium bromide
to imine 6 failed to give any of the desired product
(Scheme 2).
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this table, 2.0 equiv of p-TsOH was used.



Scheme 2. Attempts toward five-membered systems.
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Scheme 3. Reagents and conditions: (a) TFAA, pyridine; (b) 1 mol %
(ImesH2)(PCy3)(Cl)2Ru@CHPh; (c) H2 Pd/C, MeOH, 60 psi.
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As an extension of this chemistry, a series of trifluoro-
acetate-protected RCM adducts were subjected to
hydrogenation conditions to provide the corresponding,
fully saturated spirocyclic framework in excellent yield
(Scheme 3).

In conclusion, we have developed a two-step reaction
sequence using a one-pot a-aminoallylation reaction
followed by the RCM reaction to make a diverse
collection of spirocyclic diamines. The reaction sequence
uses readily available starting materials to afford prod-
ucts in an efficient and concise process. The use of amino
ketones in the a-aminoallylation reaction represents a
valuable extension of this chemistry. The final products
represent structural chemotypes that are useful scaffolds
for lead generation. The diversification of this diamine
collection is currently under way and will be reported
in due course.
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